258 research outputs found

    Spin accumulation in forward-biased MnAs/GaAs Schottky diodes

    Full text link
    We describe a new means for electrically creating spin polarization in semiconductors. In contrast to spin injection of electrons by tunneling through a reverse-biased Schottky barrier, we observe spin accumulation at the metal/semiconductor interface of forward-biased ferromagnetic Schottky diodes, which is consistent with a theory of spin-dependent reflection off the interface. Spatiotemporal Kerr microscopy is used to image the electron spin and the resulting dynamic nuclear polarization that arises from the non equilibrium carrier polarization.Comment: 13 pages, 4 figures, submitted for publicatio

    Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation

    Get PDF
    The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T2 of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T2 and details of the aggregate. We find that in the motional averaging regime T2 scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T2 N^{-0.44} for aggregates with d=2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T2 is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times.Comment: 20 pages, 3 figures, submitted to Journal of Magnetism and Magnetic Material

    Time-resolved ferromagnetic resonance in epitaxial Fe1-xCox films

    Full text link
    Magnetodynamics in epitaxial Fe1-xCox films on GaAs (100) are studied using time-resolved ferromagnetic resonance, in which the free precession of the magnetization after an impulsive excitation is measured using the polar Kerr effect. The sample is rotated with respect to the static and pulsed field directions, providing a complete mapping of the free energy surface and characteristic relaxation times. The magnetic response can be simulated with a simple coherent rotation model except in the immediate vicinity of switching fields. Bulk and surface anisotropies are identified, and unusual dynamics associated with the coexistence of cubic and uniaxial anisotropies are observed.Comment: PDF - 4 figure

    Optically-patterned nuclear doughnuts in GaAs/MnAs heterostructures

    Full text link
    We demonstrate a scheme for optically patterning nuclear spin polarization in semiconductor/ferromagnet heterostructures. A scanning time-resolved Kerr rotation microscope is used to image the nuclear spin polarization that results when GaAs/MnAs epilayers are illuminated with a focused laser having a Gaussian profile. Rather than tracking the intensity profile of the laser spot, these images reveal that the nuclear polarization forms an annular lateral structure having circular symmetry with a dip rather than a peak at its center.Comment: 11 pages, 3 figure
    • …
    corecore